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Abstract In this study, a new method evaluate the auxiliary function B j
m′m (β) which

the function appears in the matrix elements d j
m′,m (β) are formulated. Also, the gener-

ating functions, Rodrigues’ formula, and orthogonality relationships for the B j
m′m (β)

function are presented. To analyze their formal mathematical structure, B j
m′m (β) func-

tions are expressed in terms of the Jacobi, Gegenbauer, Legendre, and Chebyshev
polynomials. B j

m′m (β) functions and their linear combinations are calculated numer-
ically for large values of the indices j, m′, m quantum numbers and β angles by using
generating function. Finally, evaluating numerical values for them are checked with
obtained control expressions and results of Öztekin and Özcan (J Math Chem 44:28,
2008).

Keywords Rotation matrix elements · Auxiliary functions · Generating functions

1 Introduction

The matrix representations of finite rotations appear occasionally in physical prob-
lems such as of angular momentum. In quantum chemistry and physics, they occur
for instances as factor of applications of these molecular spectroscopy. Their many
properties and derivations have been investigated by Edmonds [1], Fano and Racah
[2], Rose [3], Zare [4], Ivanic and Ruedenberg [5], Altmann and Bradley [6], and
recently Choi et al. [7].
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The Wigner D functions denotes an element of the rotation matrix, the rotation
being describing by a set of three Euler angles, which we shall called α, β, and γ .
Their properties can be easily found in the literature. The dependence on α and γ of
the matrix representation of the rotation operator R can be determined very simply.
We shall follow the notation of Ref. [3]. The elements of the finite rotation matrix can
be make dependent of them through

D j
m′,m (αβγ ) = e−im′α

〈
jm′

∣∣∣e−iβ Jy

∣∣∣ jm
〉

e−imγ

= e−im′αd j
m′,m (β) e−imγ (1)

Since d j
m′,m (β) is unitary and real, the following symmetry relations are satisfied

d j
m′,m (β) = d j

m,m′ (−β)

= (−1)m−m′
d j

m,m′ (β)

= (−1)m−m′ (
d j

m′,m (β)
)∗

= d j
−m,−m′ (β)

= (−1)m−m′
d j
−m′,−m (β) (2)

Once we obtain the matrix elements d j
m′,m (β), the construction of the full rotation

matrix elements D j
m′,m is simple because of Eq. 1. Using the group theory, a general

expressions D j
m′,m has been obtained Wigner and also given by Rose [3]

d j
m′,m (β) =

{
Fm ( j + m) Fm′

(
j + m′)

Fm ( j) Fm′ ( j)

}1/2 (
cos

β

2

)2 j

∑
i

(−1)i+m′−m Fm
(
m′ + i

)
Fi−m ( j) Fm′+i ( j)

Fm (i)

(
tan

β

2

)m′−m+2i

(3)

where Fm (n) are binomial coefficients and the sum over i runs through all integer
values for which the factorials involved exists.

D j
m′,m matrix elements have been expressed by product of two auxiliary functions

as following forms [8];

D j
m′m (α, β, γ ) = e−im′α A j

m′,m (β) B j
m′,m (β) e−imγ (4)

The representations of the auxiliary functions A j
m′,m (β) and B j

m′,m (β) are defined by
Eqs. 12 and 13 in Ref. [8]:
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A j
m′,m (β) =

[
( j + m)! ( j + m′)!
( j − m)! ( j − m′)!

]1/2 (
cos

β

2

)m+m′ (
sin

β

2

)m′−m

Bk
i,l (β) = 1

� (k)

(
2

cos β − 1

)i

2 F1

(
i, l; k; cos β + 1

cos β − 1

)
(5)

In Ref. [8], it was demonstrated that the auxiliary functions for d j
m′,m (β) coefficients

are a fairly complicated mathematical objects. Therefore, in this paper I prefer to use a
completely different approach, namely, that of generating functions. These functions
have a relatively easy mathematical structure to obtain recurrence relations, orthogo-
nality relationships, special values, and analytical expressions for B j

m′,m (β) functions.
Consequently, these functions may be considered to find some fundamental entities
for B j

m′,m (β) and so far d j
m′,m (β). Because of the simplicity of the generating func-

tions it is an obvious idea to evaluate new analytical expressions for B j
m′,m (β) and

consequently d j
m′,m (β) matrix elements.

In Sect. 3 of this paper, I shall discuss the relevant properties of generating func-
tions for B j

m′,m (β) functions. As can be seen from Eqs.1 and 4 of this study and Eq. 11

of Ref. [8], d j
m′,m (β) matrix elements are written as multiplied of two auxiliary func-

tions such as A j
m′,m (β) and B j

m′,m (β) given by Eq. 5. Because of the auxiliary function

A j
m′,m (β) involve the product of two trigonometric functions the numerical calcula-

tions involving them is simplest. It is more interesting to obtain B j
m′,m (β) functions

by numerically and analytically as happened with many polynomials. To accomplish
this task, I shall present the B j

m′,m (β) functions in terms of other special functions of
mathematics and mathematical physics such as beta functions, Gegenbauer, Legendre,
Jacobi, and Chebyshew polynomials and functions. The required background mathe-
matics is assembled in Sect. 3. Finally, we would like to emphasize that this paper is
devoted to derivation of analytical expressions for B j

m′,m (β) functions.
The final section in this paper provides information about the computational imple-

mentation and the documentation of the advantages of the new approach as regards
speed and accuracy for numerical calculations of B j

m′,m (β) auxiliary function.

Obtained numerical results for B j
m′,m (β) functions compared with results of Ref. [8].

In this comparison a perfect matching is obtained.

2 Definitions and basic properties

The Jacobi polynomials P(α,β)
n (x) may be expressed in terms of hypergeometric

functions as follows [9];

P(α,β)
n (x) = (−1)n � (n + 1 + β)

n!� (1 + β)
F

(
n + α + β + 1,−n; 1 + β; 1 + x

2

)

= � (n + 1 + α)

n!� (1 + α)

(
1 + x

2

)n

F

(
−n,−n − β;α + 1; x − 1

x + 1

)
(6)
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A generalized hypergeometric series is given by

p Fq
(
a1, a2, . . . ap; b1, b2, . . . bq ; z

) =
∞∑

k=0

(a1)k (a2)k . . .
(
ap

)
k zk

(b1)k (b2)k . . .
(
bq

)
k k! (7)

where (a)k is denoted the Pochhammer symbols and Pochhammer symbols are defined
following form with the help of the Gamma functions by;

(a)k = � (a + k)

� (a)
= a (a + 1) . . . (a + k − 1)

The generating function of Jacobi polynomials are defined as [9]

∞∑
n=0

P(α,β)
n (x) tn = 2α+β (1 − t + R)−α

R (1 + t + R)β
(8)

where

R =
√

1 − 2xt + t2

We define Gegenbauer polynomials which are related to hypergeometric functions
and Jacobi polynomials. These relationships are defined as following form [9]

Cm
n (x) = � (n + 2m)

� (n + 1) � (2m)
F

(
2m + n,−n; m + 1/2; 1 − x

2

)

= � (n + 2m) � (m + 1/2)

� (n + m + 1/2) � (2m)
P(m−1/2,m−1/2)

n (x) (9)

The product of two Gegenbauer polynomials can be written as following form [10]

Cb
a (x) Cd

c (x) =
N∑

m=0

(−1)m am (b, a; d, c) (2x)a+c−2m

=
N∑

m=0

(−1)m am (d, c; b, a) (2x)a+c−2m (10)

where

N =
[

b + c

2

]
− 1 − (−1)bc

2

The orthogonality integral for the Gegenbauer polynomials are given by following
form [9]
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1∫

−1

Cλ
n (β) Cλ

m (β)
(

1 − β2
)λ−1/2

dβ

=

⎧
⎪⎨
⎪⎩

0, n �= m

π
21−2λ�(n+2λ)

n!(λ+n)[�(λ)]2 , n = m
(11)

3 Properties and special values of auxiliary function B j
m′m (β)

Now, let us introduce a generating function of two variables;

fm′m (β, t) = (1 − t + R)m−m′

R (1 + t + R)m+m′

=
∞∑

j=m′

( j + m)!B j
m′m (β)

22m′
( j − m′)! t j−m′

(12)

where

R =
√

1 − 2t cos β + t2 (13)

For the first few B j
m′m (β) functions we need the coefficients t0, t1 and t2. These pow-

ers of t appear only in the terms j = m′, m′+1, and m′+2 and hence we may limit our
attention to the first three terms of the infinite series. The coefficient of t j , B j

m′m (β),
is defined to be an auxiliary function order of j . Expanding the Maclaurin series, we
have

Bm′
m′m (β) = 1

(m + m′)!
Bm′+1

m′m (β) = 1

(m + m′ + 1)!
{(

m′ + 1
)

cos β − m
}

(14)

Bm′+2
m′m (β) =

2m2 − m′−2 sin2 β−2m
(
3 + 2m′) cos β +

(
2m′2 + 7m′ + 1

)
cos2 β

2 (m + m′ + 2)!

In employing general treatment, we find that the Rodrigues’ formula for the B j
m′m (β)

auxiliary function.

Bm′+r
m′m (β) = 22m′

(m + m′ + r)!
{

∂r

∂tr
fm′m (β, t)

∣∣∣∣
t=0

}
(15)

where r = 0, 1, 2, . . .
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Our generating function provides still more information about the B j
m′m (β) auxil-

iary function. If we take m′ = m = 0 in Eq. 12, we can be rewritten [9]

B j
0,0 (β) = P(0,0)

j (cos β)

= Pj (cos β) (16)

The other special values can be found in case β = 0, π ;

B j
m′,m (0) = (−1) j−m′ B

(
j − m + 1, m + m′ + 1

)

B ( j + m + 1, m′ − m + 1)
B j

m′,m (π)

= B
(

j − m + 1, m + m′ + 1
)

(m′ + m)!B ( j + m + 1, m′ − m + 1)
(17)

where B(a, b) is the beta function.
If we set m = 0, m′ = n − 1/2 in Eq. 12, the function of B j

m′m (β) can be rewritten
in terms of Gegenbauer polynomials by using Eqs. 6 and 9;

B j
n−1/2,0(β) =22(3n−1)

√
π

� (2 ( j−n + 1)) � (n) � ( j + n + 1)

� (2 j + 2n + 1) � ( j−n + 1)
Cn

j−n+1/2 (cos β)

(18)

If we set n = 0 in Eq. 18, we have

B j
−1/2,0 (β) = Tj+1/2 (cos β)√

π
(19)

where T is the Chebyshev functions [9].
By using the product of two auxiliary functions with same arguments, the follow-

ing symmetry relationships may easily be obtained from in terms of the Gegenbauer
polynomials;

B j
n−1/2,0 (β) Bl

m−1/2,0 (β) = A jl
nm Glm

jn (cos β) (20)

= Al j
mnGlm

jn (cos β) (21)

= Al j
mnG jn

lm (cos β) (22)

= A jl
nm G jn

lm (cos β) (23)

Where we use following definitions

Glm
jn (x) = Cn

j−n+1/2 (x) Cm
l−m+1/2 (x) (24)
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and

Al j
mn = 22(3(n+m)−2) � (n) � (m) � ( j + n + 1) � (l + m + 1)

π� ( j − n + 1) � (l − m + 1)

� (2 ( j − n + 1)) � (2 (l − m + 1))

� (2 j + 2n + 1) � (2l + 2m + 1)
(25)

In this special case, the orthogonality relationship for B j
m′m (β) auxiliary functions is

obtained following integral equality by using Eqs. 11 and 20–24;

( j + 1/2)

π∫

0

B j
n−1/2,0 (β) Bl

n−1/2,0 (β) (sin β)2n dβ

= π
A jl

nn� ( j + n + 1/2)

22n−1� ( j − n − 1/2) [� (n)]2 δ j,l (26)

If one can use Eq. 6 and orthogonality relationships for the Jacobi polynomials, we
immediately find generalized orthogonality integrals for B j

m′m (β) functions:

(
2 j+2m′+1

) π∫

0

(
sin

β

2

)2(m′−m)+1 (
cos

β

2

)2(m′+m)+1

B j
m′m (β) Bk

m′m (β) dβ

=
[(

j − m′)!
( j + m)!

]2 (
j + m′ − m

)! ( j + m′ + m
)!

j ! ( j + 2m′)! δk, j

(27)

4 Results and discussions

In this paper, various mathematical properties of B j
m′m (β) functions were analyzed

and the relevance of some special functions of mathematics and mathematical physics
were presented. In Sect. 3, B j

m′m (β) functions have expressed by using of generat-
ing function with two variables. It seems that generating functions have the simplest
mathematical structure compared of other mathematical objects. It seems that B j

m′m (β)

functions are convenient in which analytical manipulations of B j
m′m (β) coefficients

are of crucial importance.
As can be seen Eq. 12, we have the relations through the auxiliary function B j

m′m (β)

in the form of infinite series. A large number of computer calculations of such as
these functions carried out by us show that the infinite series with respect to N con-
verges rapidly. For a given pair of m′, m all possible β values were screened and
maximum value of the error was determined following expression. With the help of
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Eqs. 7, 11, we obtain control expression for the linear combinations of B j
m′m (β) aux-

iliary functions

εm′m (β) =
∣∣∣∣∣∣

lim
N→∞

N∑
j=0

a j+m′
m′m B j+m′

m′m (β) − fm′m (β)

∣∣∣∣∣∣
(28)

fm′m (β) =
∞∑

j=m′
a j

m′m B j
m′m (β) (29)

= 22m′ (R + 1/2)m−m′

R (R + 3/2)m+m′

Where

a j
m′m = ( j + m)!

2 j−m′
( j − m′)!

R = 1

2

√
5 − 4 cos β (30)

As an example, let us study the case of − log εm′,m having the form shown in Figs. 1
and 2. The convergence in the infinite series has been examined in numerous calcula-
tions, for which Fig. 1 shows only results for the − log εm′,m for m′ = 3, m = 2, and
β = π/6. As upper limit of summation in Eq. 28 increases, − log εm′,m increases and
attains a constant value at β = π/6 (see Fig. 1). For a given m′, m pair it was observed
that the maximum error occur when β ≈ π . Figure 2 shows plot of − log ε3,2 versus β

angles when the values of upper limits for summation N = 25. Note that − log εm′,m
is equivalent to numbers of correct decimal places.

The B j
m′m (β) function calculated from Eq. 15. The results are given in Table 1. It

is seen Table 1 that the special values given by Eq. 17 is satisfied. Obtained numerical
results in this paper are agreement with the results of Ref. [8].

Fig. 1 The convergence of series as a function of the upper limits of summation in Eq. 28 when β = 30◦
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Fig. 2 Plot of − log ε3,2 versus β angles when N = 25

Table 1 The values of B j
m′m (β) functions for selected quantum numbers and β angles

j m′ m β B j
m′,m (β)

2 0 0 π/3 −0.125

2 2 1 π/4 0.166666666667

3 2 1 π/6 0.066586508806

5 3 2 π/3 −0.00037202381

5 4 −2 0 1.166666666667

5 4 −2 π −0.5

6 2 3 π 0.008333333333

10 8 2 π/6 7.795597062 × 10−8

15 14 10 π/2 −6.446950284 × 10−25

18 18 −5 π/3 1.605904384 × 10−10

25 20 −8 0 8.007120227 × 10−8

25 20 −8 π −2.087675699 × 10−9

30 10 10 π 4.110317623 × 10−19

40 36 15 π/6 8.065414833 × 10−69

For some selected parameters, numerical values of the product two B j
m′m (β) func-

tions are presented in Table 2. Products of two B j
m′m (β) functions calculated from

Eq. 18 are checked for their accuracy by the symmetry relationships given in
Eqs. 20–23. In this comparison a perfect matching is obtained. It should be noted that
these equations presented in this paper can be used to calculate any B j

m′m (β) function
and their product for the arbitrary values β angles and quantum numbers. All numer-
ical calculations are performed on a P. IV 2.8 GHz computer using MATHEMATICA
5.0 [11].
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We believe that presented new approach in this paper for the calculation of the
d j

m′m (β) coefficient is important. Following studies related to this work will include

calculation of d j
m′m (β) coefficient.
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